Google ADK library and BaseSessionService

Exported on 2/7/2026 at 22:08:35 GMT+2 from Cursor (2.4.27)

User

Briefly explain the purpose and capabilities of the @google-adk library, and explain the role of classes derived from BaseSessionService.

Cursor

Searching the ADK docs and your project for BaseSessionService and session handling.
Checking the ADK overview and Python SessionService/BaseSessionService API:
Checking the ADK Python API for the session service base class:

Here's a concise summary:

Google ADK — purpose and capabilities

Agent Development Kit (ADK) is an open-source, code-first toolkit for building, evaluating, and deploying Al agents. It targets both conversational and non-
conversational agents and multi-agent systems.

Purpose: Give developers a structured way to build agents with clear primitives (agents, tools, sessions, state, memory) and to run them locally or in production (e.g.
Vertex Al, Cloud Run).

Main capabilities:

Agents: LLM-based agents and workflow-style agents (e.g. SequentialAgent, ParallelAgent, LoopAgent).

L]
e Tools: Custom functions, agents-as-tools, built-ins (e.g. code execution, search), MCP, OpenAPI.

e Session management: One Session per conversation thread: history (events), per-conversation State, and optional long-term Memory across sessions.
e Runner: Runs the agent loop, uses session/state/events, and talks to backend services (including the session store).

e Streaming: Bidirectional streaming (e.g. text/audio with Gemini).

e Deployment & observability: Vertex Al Agent Engine, Cloud Run, GKE; integration with tracing, logging, evaluation.

So ADK is the layer that defines how agents, tools, sessions, and storage plug together; the actual storage for sessions is pluggable via a SessionService.

Role of classes derived from sasesessionservice (S€ssionService implementations)

SessionService is the abstraction that owns the full lifecycle of Session objects (conversation threads). Classes that implement this abstraction (in Python these are
typically subclasses of BaseSessionService or otherwise implement the same interface) are the only place that creates, reads, updates, and deletes sessions. The
Runner and your app always go through a SessionService to get or change session data.

Concrete responsibilities:

1. Create sessions — Create anew Session (with app_name, user_id, optional initial state) and return it (e.g. when a user starts a new chat).
2. Retrieve sessions - Load an existing Session by id (and usually app_name / user_id) so the agent can resume a conversation.
3. Append events and update state — When the Runner finishes a turn, it calls the service to append the new Event to the session’s history and to apply any

state changes implied by that event; the service is responsible for persisting both.
4. List sessions - List sessions for a given app and/or user (e.g. “my conversations”).
5. Delete sessions — Remove a session and its data when the conversation is over or for compliance.

Built-in implementations:

* InMemorySessionService - In-process only; data is lost on restart (dev/testing).
o DatabaseSessionService — Persistent storage in a relational DB (e.g. PostgreSQL, SQLite with an async driver).
e VertexAiSessionService - Managed persistence via Vertex Al / Agent Engine (production on GCP).

Custom implementations (e.g. your mongo_session_service.py):

By implementing a class derived from BaseSessionService (or the equivalent SessionService interface in your ADK language), you provide a custom backend for
sessions (e.g. MongoDB). Your class must implement the same lifecycle operations (create, get, append_event, list, delete) so the Runner and the rest of ADK can
manage conversation threads without caring whether storage is in memory, SQL, Vertex Al, or MongoDB. That's the role of SessionService and its derived classes:
they are the pluggable persistence layer for conversation threads.

User

Give me a high-level overview of how DatabaseSessionService is implemented

Cursor

Checking the schema definitions to complete the picture:

Here's a concise high-level overview of how DatabaseSessionService is implemented in ADK Python.

High-level overview of DatabaseSessionService

DatabaseSessionService is a concrete BaseSessionService that persists sessions, events, and state in a relational database via SQLAlchemy (async engine and
session factory). It uses separate storage tables and supports two schema versions (v0 and v1) with lazy table creation and optional schema migration.

1. Construction and engine

Input: A database URL (e.g. sqlite+aiosqlite:///file.db or postgresql+asyncpg://...).

e Engine: Uses create_async_engine() so all DB access is async. For SQLite in-memory it uses StaticPool and enables foreign keys viaa connect event;
for other backends it can use pool_pre_ping.

e Session factory: An async_sessionmaker bound to that engine is used for all operations (no sync SQLAIchemy session APIs in this service).
Lazy setup: Tables are not createdin __init__ . A _prepare_tables() step runs before the first operation and uses locks so schema detection and table
creation are done once, safely.

2. Schema and storage model

e Schema versions: Two schema modules exist: vO (legacy, pickle-based) and v1 (JSON-based). The service detects which version the DB is using (or assumes
v0 if no metadata) and then uses the matching ORM classes (_SchemaClasses).
e Storage tables (conceptually):
o Sessions — One row per conversation: app_name, user_id, session id, session-level state (dict), create_time, update_time .
o Events — One row per event in a session: linked by (app_name, user_id, session_id) , with event payload and timestamp (used for ordering and
optional filtering in get_session).
o App-level state — One row per app_name ; key-value state shared across sessions of that app.
o User-level state — One row per (app_name, user_id) ; key-value state for that user across their sessions.
e State merging: At read time, session state, user state, and app state are merged (with prefixes) into the single Session.state dict that the rest of ADK
expects.

3. BaseSessionService APl implementation

e create_session:
Ensures tables exist, then in a transaction: loads or creates app and user state rows, applies initial state deltas (split into app/user/session via
_session_util.extract_state_delta), inserts a new session row, commits, and returns a Session with merged state. Reuses existing session_id if
provided; otherwise the storage layer generates one. Raises if a session with that id already exists.

e get_session:
Loads the session row by (app_name, user_id, session_id) .If GetSessionConfig is provided, loads events with optional after_timestamp and/or
num_recent_events, ordered by timestamp. Fetches app and user state, merges with session state, builds Event list from storage events, and returns a
Session (or None if not found).

e list_sessions:
Queries session rows by app_name and optional user_id, loads app and (per-user) user state, merges state for each session, and returns
ListSessionsResponse(sessions=...).

e delete_session:
Deletes the session row for (app_name, user_id, session_id) . Event and state table design may allow cascades or leave orphan events depending on
schema; the main contract is that the session row is removed.

e append_event:
E'r:[s)ures tables exist, then in a transaction: loads the session and app/user state rows. Optionally reloads the in-memory Session from storage if the stored
update_time is newerthan session.last_update_time (optimistic concurrency). Applies event.actions.state_delta to app, user, and session state
in storage. Persists the new event via StorageEvent.from_event(session, event) ,updates the session’s update_time , commits, then updates
session.last_update_time and calls super().append_event() soin-memory session and event list stay in sync.

4. Concurrency and transaction handling

e Transactions: Each operation runs inside an async context that provides a DB session and rolls back on any exception (_rollback_on_exception_session)
to avoid leaving failed transactions in the pool.

e Lazy table creation: _prepare_tables() uses two locks: one to detect/set the DB schema version, and one to create tables once. All of this is async and
avoids duplicate creation under concurrency.

e Optimistic check in append_event: Before applying an event, the code compares stored update_time with the in-memory session’s last_update_time and,
if the DB is newer, reloads session and events from the DB so concurrent updates are not lost.

5. Lifecycle and compatibility

e close() / aexit: Disposes the SQLAlchemy engine and closes connections when the service is used as an async context manager.
o Schema migration: From v1.22.0 onward, the recommended schema is v1 (JSON). The docs describe a separate migration path (e.g. adk migrate
session) from vO (pickle) to v1; the service itself just uses whichever schema version it detects in the DB.

In short: DatabaseSessionService implements the full BaseSessionService APl by mapping sessions, events, and app/user/session state to SQLAlchemy-backed
tables, with async-only access, lazy schema/table setup, two schema versions (v0/v1), and careful transaction and concurrency handling so it can be used as a drop-
in persistent backend for ADK sessions.

User

List all the tables where DatabaseSessionService stores session data for schema v1. For each table, list the primary keys (PKs), then explain how the tables are
connected to each other (FKs?).

Cursor

Here's a concise summary of the vl schema used by DatabaseSessionService : tables, primary keys, and how they relate.

Tables in schema v1

1. adk_internal_metadata (StorageMetadata)

Column Type Role
key String(128) PK
value String(256)

e PK: key
e FKs: None. Used for internal metadata (e.g. schema version).

2. sessions (StorageSession)

Column Type Role

app_name String(128) PK

user_id String(128) PK

. . PK (session id, default
id String(128) uuida)

state DynamicJSON Session-level state

create_time PreciseTimestamp
update_time PreciseTimestamp

e PK: (app_name, user_id, id) (composite)
e FKs: None. Referenced by events .

3. events (StorageEvent)

Column Type Role
id String(128) PK (event id)
app_name String(128) PK

user_id String(128) PK

Sedasinn_id Bipieg(128) RKle
invocation_id String(256)
timestamp PreciseTimestamp

Serialized Event

event_data DynamicJSON (JSON)

e PK: (id, app_name, user_id, session_id) (composite)

e FK:
(app_name, user_id, session_id) — (sessions.app_name, sessions.user_id, sessions.id)
with ON DELETE CASCADE (deleting a session deletes its events).

4. app_states (StorageAppState)

Column Type Role

app_name String(128) PK

state DynamicJSON App-level
state

update_time PreciseTimestamp

e PK: app_name
e FKs: None. Logically “one row per app”.

5. user_states (StorageUserState)

Column Type Role

app_name String(128) PK

user_id String(128) PK

state DynamicJSON User-level
state

update_time PreciseTimestamp

e PK: (app_name, user_id) (composite)
e FKs: None. Logically “one row per (app, user)”.

How the tables are connected

o Only declared foreign key:
events — sessions

o Columns: (app_name, user_id, session_id) in events.
o References: (sessions.app_name, sessions.user_id, sessions.id) .
o ON DELETE CASCADE : deleting a session row removes all its event rows.

e No FKs between:
sessions, app_states, and user_states .
They are linked only by application logic using the same identifiers:

o sessions and app_states share app_name.
o sessions and user_states share (app_name, user_id) .

o Atruntime, DatabaseSessionService loads session + app_state + user_state and merges their state dicts (with prefixes) into a single
Session.state.

e adk_internal_metadata is standalone (key-value store for schema version, etc.).

So in v1 there is one explicit FK: events — sessions with CASCADE. The other tables are related only by shared keys (app_name , user_id) in code, not by
database FKs.

User

What concurrency considerations are taken into account in the @google-adk DatabaseSessionService implementation? Does it use any synchronization primitives
when writing concurrently to the same tables from within the same process?

Cursor
Pulling the relevant concurrency-related parts from the DatabaseSessionService source.

Here's how concurrency is handled in DatabaseSessionService and what that means for concurrent writes in the same process.

1. Synchronization primitives (only for one-time setup)

The implementation uses two asyncio.Lock() instances, both only for lazy initialization, not for normal reads/writes:

e _db_schema_lock
Used in _prepare_tables() so that schema version detection runs only once. Pattern: check _db_schema_version is None - acquire lock — double-
check — detect version and set _db_schema_version - release. No lock is held during any data access.

e _table_creation_lock
Used in _prepare_tables() so that table creation runs only once. Pattern: check not _tables_created -» acquire lock —» double-check — create tables
and set _tables_created = True -»release. Again, no lock around actual data operations.

So: synchronization primitives are used only to make schema detection and table creation safe under concurrent first use. They do not protect concurrent writes to
the same tables or the same session.

2. No per-session or per-write locking

There are no application-level locks (no per-session, per-user, or per-table locks) around:

create_session
get_session
list_sessions
delete_session
append_event

So concurrent writes to the same tables from within the same process are not coordinated by any in-process synchronization primitive. Multiple coroutines can call
these methods at the same time; they do not wait on each other via locks.

3. How concurrent writes are handled instead

Separate transactions

Each logical operation uses its own SQLAlchemy async session from _rollback_on_exception_session() and commits (or rolls back on exception). So
concurrent calls get different transactions. Concurrency is left to the database (isolation level, row locking, etc.), not to in-process locks.

Rollback on exception

The context manager always rolls back the transaction on any exception before re-raising. That avoids leaving failed transactions open and exhausting the connection
pool; it doesn't serialize or coordinate concurrent writers.

Optimistic “reload if stale” in append_event
Before applying a new event and state deltas, the code compares the session’s stored update_time with the in-memory session.last_update_time:
if (

storage_session.get_update_timestamp(is_sqlite)

> session.last_update_time

):
Reload the session from storage if it has been updated since it was
loaded.
session.state = _merge_state(...)

session.events = [e.to_event() for e in storage_events]

So if another writer has already committed an update to that session, the current writer refreshes the in-memory session from the DB and then applies its own event
and state delta and commits. There is no retry loop, no row-level locking (e.g. SELECT ... FOR UPDATE), and no in-process lock. So:

e Events: Each append adds a new row (event id is unique); concurrent appends can both commit and both events are stored.

e State: Updates are read-modify-write in the transaction. Two concurrent appends can both read, merge their deltas, and commit; the last commit wins for the
overlapping state. The “reload if stale” only makes the in-memory Session object reflect the latest DB state before this writer applies its delta; it does not
prevent two writers from interleaving.

So: concurrent writes to the same session from the same process are allowed; they rely on DB transactions and this optimistic refresh, with no in-process
synchronization around the actual writes.

4. Summary

Aspect What the implementation does

Locks for setup Uses asyncio.Lock() only for schema version detection and table creation (double-checked locking).

Locks for data

writes None. No per-session, per-table, or per-operation locks when writing to the same tables from the same process.

Handled by separate DB transactions plus the “reload if stale” logic ir append_event ; no in-process serialization of

Concurrent writes .
writes.

So: yes, it uses synchronization primitives, but only to make one-time setup safe. It does not use any synchronization primitives when writing concurrently to the same
tables from within the same process; those writes are coordinated only by the database and the optimistic reload in append_event .

	Google ADK library and BaseSessionService
	Google ADK – purpose and capabilities
	Role of classes derived from BaseSessionService (SessionService implementations)
	High-level overview of DatabaseSessionService
	1. Construction and engine
	2. Schema and storage model
	3. BaseSessionService API implementation
	4. Concurrency and transaction handling
	5. Lifecycle and compatibility

	Tables in schema v1
	1. adk_internal_metadata (StorageMetadata)
	2. sessions (StorageSession)
	3. events (StorageEvent)
	4. app_states (StorageAppState)
	5. user_states (StorageUserState)

	How the tables are connected
	1. Synchronization primitives (only for one-time setup)
	2. No per-session or per-write locking
	3. How concurrent writes are handled instead
	4. Summary

